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Abstract.

Over the past years there has been an increasing interest in applying fluid 
simulation in video games. Before, the arithmetic requirements were too high for 
real-time applications, but with the more powerful hardware available today – 
along with algorithmically optimizations – games can now use fluids to improve 
the behaviours and visuals of effects such as smoke and water. The purpose of 
this document is to describe some of the more popular approaches – including 
Eulerian and SPH – to approach real-time fluids in games. It also describes 
some of the techniques available to visualize the data with realistic results. 
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1. Introduction.

Fluid-simulation has traditional mainly been used in 
areas where real-time execution has not been a 
requirement, such as movies and science projects. 
This is because of the expense of updating the 
fluids behaviours – which involves a lot of 
calculations of complex and expensive formulas – 
computations that mostly needs to be done several 
times each second to produce realistic results. The 
full-scale computational power to produce, for 
instance, a glass of water is actually tremendous. 
Thus, every step to reduce that cost is potentially a 
great difference between getting reasonable fps, 
frames per second, or not. However, it’s not only 
updating the fluids behaviours from its physical 
characteristics that is a challenge – but also to use 
the calculated data to produce a fulfilling visual 
result.

 2. Behaviour processing

There are different approaches – both in theoretical 
perspective and in implementation – in how to 
simulate the behaviours of fluids. However, all of 
them have in common that they rely on the fact that 
a “piece” of water is influenced by its neighbours. 
The problem is to find a way to make the 
computations of that piece’s physical 
characteristics, while reducing the arithmetics 
throughput needed for the simulation. How this 
piece is represented in implementation depends on 
the used approach: the Eulerian one represents the 
fluids using grids (seeing the water as cells) – while 
the Lagrangian one considers the water as a set of 

particles. Both these have different kinds of pros 
and cons. 

 2.1 Navier-Strokes equations

In physics, the Navier-Strokes equations, describes 
the physical behaviours (motion) of fluids. They are 
named after Claude-Louis Navier (1785-1836) and 
George Gabriel Stokes (1819-1903) and consider 
work derived by Newton’s second law of motion. 

The equations are mainly used to calculate 
velocities rather than positions, thus results 
performed by these equations are mainly referred to 
as “velocity fields” or “flow fields”. 

The equations are widely used in scientist-related 
projects, such as weather simulation (modelling 
weather and oceans), water flow in pipes, and 
designing aircrafts and cars. Because of their 
complex nature, the Navier-Strokes equations aren’t 
very suitable for video games, but could be used to 
pre-calculate data if desired. 

2.2 Eulerian fluid simulation approach

The Eulerian approach, based on the Euler equation 
(fluid dynamics) by the mathematician Leonhard 
Euler (1707-1783), is commonly concretized as a 
grid-based approach. It is typically used when 
simulating larger areas of water, such as seas and 
oceans. 
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The equation considers mass, momentum and 
energy, corresponding to the Navier-Strokes 
equations, according to the following formula:

(1)

Where ρ is the fluid mass density, u the fluid 
velocity vector, with components u, v, and w,
E = ρ e + ½ ρ ( u2 + v2 + w2 ) is the total energy 
per unit volume and p is the pressure.

The approach is to implementing a grid with a set 
of cells and then apply the Eulerian formulas to 
calculate how a change in height of a cell affects 
(and is affected by) its neighbours – and adjust 
them accordingly. 

The problem with the Eulerian approach is the lack 
of possibility to have several height values – since 
the grid stores the height value for a given point 
(making it not fully 3D), thus making it unsuitable 
for sprays and splashes, and surfing/overturning 
waves.  

In their paper on Real-Time Eulerian Water 
Simulation Using a Restricted Tall Cell [CM2011] 
Chantanez and Müller proposed a method to deal 
with the issues of grid-based water (such as lack of 
overturning waves). Through using a hybrid grid 
presentation composed of a regular cubic cells on 
top of a layer of tall cells, one can reduce the 
computational expenses by reducing the resolution 
on areas which aren’t seen by the viewer while 
maintaining the appearance by the surface. The 
proposed approach is to represent the fluids in two 
different data structures in the same time: tall cells 
(the normal grid cells) below the surface and cubic 
cells on a top layer above the tall cells. The tall-
cells represents the height of the cells, while the 
cubic cells are used to create additional detail and 
3d appearances at the surface, by making several 
cells representing several layers of water. For the 
tall cells, the quantities like velocity, pressure etc, 
are stored at the center of the topmost and the 
bottommost sub cells, while the cubic cells store 
these quantities at the center. 

The key is to parallelly solve the Euler equations on 
both the height field columns and the cubic grid 
cells, which makes the surface influenced by the 
lower water levels, but with additional calculations 
by the surface to improve visualizations. 

 2.3 Smoothed particle hydrodynamics (SPH)

SPH is a mesh-free Langrangian method (i.e. 
particle based). The particles have a spatial distance 
(referred to as “smoothing length”) which 
properties are defined by a kernel function – a 
function of two variables that defines a integral 
transform – meaning that the physical property of a 
particle is defined by the properties of the particles 
within a specified range of the kernel. One of the 
most used kernel functions are the Gaussian 
function – which smoothes out the influence non-
linearly over the given distance – as shown in the 
image:

For instance, when applied to temperature of 
liquids, a given particle at a given position depends 
on all particles within a radial distance, using the 
SPH formula: 

 (2)

Where  is the mass of particle ,  is the 

value of the quantity  for particle ,  is the 

density associated with particle ,  represents the 
position and is the kernel function mentioned 
above.

The density  can be computed with Eq. (2) 
giving:

 (3)

An issue with SPH is its restriction to liquids with 
the same physical characteristics. With their paper, 
on particle based fluid-fluid interaction 
[MSKG2005] Müller, Solenthaler, Keiser, and 
Gross, proposed a set of extensions to the regular 
SPH method to solve this matter, allowing 
simulation of the phenomena of multiple fluids with 
different particle types. In the common SPH 
approach, many attributes which are identical for all 
particles are stored globally, e.g. the particle mass 
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m, the density p etc. In their approach each particle 
carries all those attributes individually, in addition 
to a few new. This also allows the introduction of 
air-based fluids – that can be used to simulate air 
bubbles in liquids. 

The main advantage of SPH is its ability to collide 
with the surrounding terrain – which makes it, 
unlike Eulerian approaches, very suitable for sprays 
and splashes.  However, it is less suitable for large 
water areas because of the particle resolution 
needed to maintain visual appearance.  
 

 2.4 SPH on GPU

The last few years it has become very popular to 
accelerate data computations by using the graphics 
processing unit (GPU) – a technique called 
“general-purpose computing on graphics processing 
units”, GPGPU. The GPU is designed to process 
resembling data quickly by using parallelism, thus 
creating a huge advantage when working with 
particles – or in other ways resembling data. 

In their paper [HKK2007], Harada, Koshizuka and 
Kawaguchi, investigated the SPH algorithm 
performance when fully implemented on the GPU, 
using OpenGL while storing data in textures. They 
noted a higher speed increased, of the proposed 
method compared to the CPU, central processing 
unit, implementation, the more particles used in the 
simulation. In the highest amount of simulated 
particles (about 4,194,304), the GPU 
implementation was roughly 28 times faster than 
the corresponding CPU implementation. However, 
since the particle data needs to be stored in the 
video memory, about 600 MB was needed, thus 
leaving less memory on the GPU for other kind of 
geometry, textures etc. 

Traditionally, this field of computational power has 
only been disposed by using rendering APIs, 
application programming interfaces, such as 
OpenGL and DirectX. However, the last years a 
new range of techniques has become available to 
access that power more straightforwardly – for 
instance by using Direct Compute or OpenCL. 
However, even though there’re new ways of 
manipulating the data on GPUs, it is mostly more 
complicated to implement algorithms on GPUs than 
CPUs – because without sufficient use of the 
parallelism, one can end up getting worse 
performance than using the CPU for the 
calculations.

 3. Visualisation

When the physical calculations (behaviours) for the 
frame have been determined, additional 
management may be required to mimic the fluids 
visual appearance. Mostly, the fluids data are too 

complex, or in other ways unsuited, for rendering 
straightforwardly, thus adding additional 
requirements to prepare the data for visualization. 
Luckily, there’re several techniques, both for 
Eulerian and Lagrangian fluids, to obtain more 
render-friendly data and present it on the screen 
with a desirable appearance. 

 
 3.1 Marching cubes
 
In their paper [LC1987], Lorensen and Cline, 
proposed a computer graphics algorithm, namely 
“marching cubes”, for extracting a polygonal mesh 
of an isosurface from a three-dimimensional scalar 
field (essentially 3d points) – sometimes called 
voxels. The approach is basically to generate a full-
scale 3d mesh from the point cloud.

The process can be made on the GPU, but it’s 
considered expensive, compared more modern 
techniques, according to the presentation Screen 
Space Fluid Rendering for Games [SG2010]. 

Although the Marching Cube algorithm is one of 
the most popular approaches to generate meshes for 
iso-surfaces of scalar fields, there’re some 
disadvantages of this approach – especially with 
real-time applications in mind. The algorithm itself 
is camera-independent, meaning that many invisible 
triangles and surface details are generated. Because 
of the algorithms way of operating in three 
dimensions, but producing results for rendable 2d 
surfaces, it has become more and more common to 
find other, more cheap ways of rendering fluids.

 3.2 Screen space meshes

An approach which has become more popular the 
last few years is to generate a screen space mesh 
from the particle data [MSD2007]. Because this 
approach mainly operates in 2D space, it avoids a 
lot of the expenses that occurs in the Marching 
cubes algorithm, thus addressing its main 
inadequacies. 

The first step is to generate a depth map and 
calculate the internal and external silhouettes of the 
surface, in screen space. Using this data it is 
possible to construct a 2D screen space triangle 
mesh with a technique that is derived from the 
marching squares approach (which is similar to the 
marching cubes). The result-mesh is transformed 
back to 3D space for rendering with desired 
visualizations techniques such as occlusions, 
reflections, refraction, and other shading effects. 

The algorithm acts in the following steps:

1. Setup a regular depth map
2. Find internal and external silhouettes
3. Smooth depth values
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4. Generate a mesh (in 2D) using Marching 
Squares

5. Smooth silhouettes
6. Transform the mesh back into world/3d 

space
7. Render the mesh with desired shading 

techniques

The main difficulty with this approach is the second 
step – to find the silhouettes to generate the desired 
mesh. 

 3.2.1 Silhouettes

The depth map, which stores depth values at each 
node of the grid, is generated from scratch at the 
beginning of each frame. First the depth values are 
initialized with infinite values. Then the algorithm 
iterates through the particles in the point cloud 
twice. In the first phase, depth values are set. In the 
second phase, additional depth values are generated 
where the silhouettes cut the grid. In both these 
phases the particles have to be transferred from 
world space to screen space. 

During the detection of silhouettes, the algorithm 
iterates through the particles a second time, where 
only grid edges which connect depth values that are 
further apart than a given number, are considered to 
be “silhouette edges”. The key is to find an 
additional node on each silhouette edge. Each node 
is located between the adjacent nodes of its 
silhouette edge and stores the depth value of the 
front layer. 

 3.2.2 Mesh generation

The next step is to generate vertices and triangles 
for the screen space mesh, by using the nodes with 
an initialized depth value which is finite. Additional 
nodes are generated where silhouette edges have 
only one initialized node. 

Lastly, the mesh is transformed back to world space 
for rendering, which can be done quickly using the 
depth map, in order to render it with reflections and 
refractions from the environment.

 3.4 Screen space fluid rendering

In their paper on screen space fluid rendering with 
curvature flow [LGS2009], Wladimir J. Van der 
Laan, Simon Green and Miguel Sainz, proposed a 
method derived from the screen space meshes 
approach, but with the extension of using the 
generated depth buffer directly for rendering – 
without generating an intermediate mesh. The 
proposed method is targeting mainly two issues: 
firstly, it avoids polygonization which does not map 

to graphics hardware in a straightforward way, and 
secondly, it addresses the issue of jelly-like 
appearances of screen space meshes – through 
adding surface details on smaller scale than the 
particles themselves.  

The first steps of the approach is very resembling of 
the one used in the screen space meshes approach. 
Firstly, the surface depth is determined by rendering 
the particles as spheres, and retaining the closest 
value – essentially a depth map. Secondly, the result 
is smoothed in screen-space to avoid jelly-like 
appearance. The problem with the second step is to 
find a suitable kernel for the operation – the most 
common ones all have different kinds of issues 
making them unsuited for the task. Gaussian filters 
causes blur over the silhouette edges; Bilateral 
filters preserve edges but are computationally 
expensive. The solution is to use something called 
“Curvature flow”, which is a method, invented to 
smooth out sudden changes in curves. Thirdly, a 
procedure to simulate the appearance of thickness is 
applied, by generating a new depth map – but with 
the difference that the fragment shader outputs the 
thickness of a particle instead of its depth value. 
The rendering is made with point spheres. Depth 
testing is still enabled though, so that only the 
particles closest to the camera are calculated. 
Lastly, all the intermediate results are combined in 
the rendering step, which is made by rendering a 
full-screen quad. The light characteristics on the 
fluid are determined by the normals given by finite 
differences of the surface depth from step one. 
During the rendering, Perlin noise is added to create 
additional detail to the fluid. 

 4. Future work

Due to the superior performance of the GPU 
implementations of the algorithms, it is likely that 
more algorithms will be disposed that emphasizes 
the GPUs incredible ability to make liquid 
calculations. Compared to the CPUs, GPUs have 
the past years increased the arithmetical throughput 
more rapidly, thus making them even more 
attractive for these kinds of simulations in the 
future. 

Another area that will probably become more 
explored is the way to optimize the well-used 
approaches even further, by introducing new data 
structures, mathematical optimizations, and/or to 
use new hardware to accelerate the calculations 
even further. 

It is also likely that more research will be made to 
improve the possibility of mixing several fluid 
hybrid simulation techniques (as in the Restricted 
Tall Cell example) – for instance to add splashes to 
grid-based fluids. 
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 5. Conclusions

There are several ways – depending on the projects 
needs – to implement fluids in games. Eulerian is 
very useful to simulate larger areas of water; 
Langrangian is convenient for sprays and splashes. 
However, whatever approach one decides to use, it 
seems to be possible to gain a lot performance by 
accelerating the computations using the GPU. 

Fluid simulation is a very hot topic with new and 
related research areas arising all the time, but fluids 
have yet only made a brief introduction in video 
games – but it will likely change in the close future. 
Thanks to continuous development of hardware, 
large-scale fluid simulation will become more 
available to games as every day passes by, thus 
making the future of fluids very interesting.  
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