
Approaching Fluids – in Games
Jonas A. Johansson

__

Abstract.

Over the past years there has been an increasing interest in applying fluid
simulation in video games. Before, the arithmetic requirements were too high for
real-time applications, but with the more powerful hardware available today –
along with algorithmically optimizations – games can now use fluids to improve
the behaviours and visuals of effects such as smoke and water. The purpose of
this document is to describe some of the more popular approaches – including
Eulerian and SPH – to approach real-time fluids in games. It also describes
some of the techniques available to visualize the data with realistic results.

Categories: Fluids, 3D Particles, Particle System on GPU
Keywords: SPH, Eulerian, Langrangian, GPGPU, OpenCL

__

1. Introduction.

Fluid-simulation has traditional mainly been used in
areas where real-time execution has not been a
requirement, such as movies and science projects.
This is because of the expense of updating the
fluids behaviours – which involves a lot of
calculations of complex and expensive formulas –
computations that mostly needs to be done several
times each second to produce realistic results. The
full-scale computational power to produce, for
instance, a glass of water is actually tremendous.
Thus, every step to reduce that cost is potentially a
great difference between getting reasonable fps,
frames per second, or not. However, it’s not only
updating the fluids behaviours from its physical
characteristics that is a challenge – but also to use
the calculated data to produce a fulfilling visual
result.

 2. Behaviour processing

There are different approaches – both in theoretical
perspective and in implementation – in how to
simulate the behaviours of fluids. However, all of
them have in common that they rely on the fact that
a “piece” of water is influenced by its neighbours.
The problem is to find a way to make the
computations of that piece’s physical
characteristics, while reducing the arithmetics
throughput needed for the simulation. How this
piece is represented in implementation depends on
the used approach: the Eulerian one represents the
fluids using grids (seeing the water as cells) – while
the Lagrangian one considers the water as a set of

particles. Both these have different kinds of pros
and cons.

 2.1 Navier-Strokes equations

In physics, the Navier-Strokes equations, describes
the physical behaviours (motion) of fluids. They are
named after Claude-Louis Navier (1785-1836) and
George Gabriel Stokes (1819-1903) and consider
work derived by Newton’s second law of motion.

The equations are mainly used to calculate
velocities rather than positions, thus results
performed by these equations are mainly referred to
as “velocity fields” or “flow fields”.

The equations are widely used in scientist-related
projects, such as weather simulation (modelling
weather and oceans), water flow in pipes, and
designing aircrafts and cars. Because of their
complex nature, the Navier-Strokes equations aren’t
very suitable for video games, but could be used to
pre-calculate data if desired.

2.2 Eulerian fluid simulation approach

The Eulerian approach, based on the Euler equation
(fluid dynamics) by the mathematician Leonhard
Euler (1707-1783), is commonly concretized as a
grid-based approach. It is typically used when
simulating larger areas of water, such as seas and
oceans.

Approaching Fluids – in Games
Jonas Johansson, 2012

The equation considers mass, momentum and
energy, corresponding to the Navier-Strokes
equations, according to the following formula:

(1)

Where ρ is the fluid mass density, u the fluid
velocity vector, with components u, v, and w,
E = ρ e + ½ ρ (u2 + v2 + w2) is the total energy
per unit volume and p is the pressure.

The approach is to implementing a grid with a set
of cells and then apply the Eulerian formulas to
calculate how a change in height of a cell affects
(and is affected by) its neighbours – and adjust
them accordingly.

The problem with the Eulerian approach is the lack
of possibility to have several height values – since
the grid stores the height value for a given point
(making it not fully 3D), thus making it unsuitable
for sprays and splashes, and surfing/overturning
waves.

In their paper on Real-Time Eulerian Water
Simulation Using a Restricted Tall Cell [CM2011]
Chantanez and Müller proposed a method to deal
with the issues of grid-based water (such as lack of
overturning waves). Through using a hybrid grid
presentation composed of a regular cubic cells on
top of a layer of tall cells, one can reduce the
computational expenses by reducing the resolution
on areas which aren’t seen by the viewer while
maintaining the appearance by the surface. The
proposed approach is to represent the fluids in two
different data structures in the same time: tall cells
(the normal grid cells) below the surface and cubic
cells on a top layer above the tall cells. The tall-
cells represents the height of the cells, while the
cubic cells are used to create additional detail and
3d appearances at the surface, by making several
cells representing several layers of water. For the
tall cells, the quantities like velocity, pressure etc,
are stored at the center of the topmost and the
bottommost sub cells, while the cubic cells store
these quantities at the center.

The key is to parallelly solve the Euler equations on
both the height field columns and the cubic grid
cells, which makes the surface influenced by the
lower water levels, but with additional calculations
by the surface to improve visualizations.

 2.3 Smoothed particle hydrodynamics (SPH)

SPH is a mesh-free Langrangian method (i.e.
particle based). The particles have a spatial distance
(referred to as “smoothing length”) which
properties are defined by a kernel function – a
function of two variables that defines a integral
transform – meaning that the physical property of a
particle is defined by the properties of the particles
within a specified range of the kernel. One of the
most used kernel functions are the Gaussian
function – which smoothes out the influence non-
linearly over the given distance – as shown in the
image:

For instance, when applied to temperature of
liquids, a given particle at a given position depends
on all particles within a radial distance, using the
SPH formula:

 (2)

Where is the mass of particle , is the

value of the quantity for particle , is the

density associated with particle , represents the
position and is the kernel function mentioned
above.

The density can be computed with Eq. (2)
giving:

 (3)

An issue with SPH is its restriction to liquids with
the same physical characteristics. With their paper,
on particle based fluid-fluid interaction
[MSKG2005] Müller, Solenthaler, Keiser, and
Gross, proposed a set of extensions to the regular
SPH method to solve this matter, allowing
simulation of the phenomena of multiple fluids with
different particle types. In the common SPH
approach, many attributes which are identical for all
particles are stored globally, e.g. the particle mass

Approaching Fluids – in Games
Jonas Johansson, 2012

m, the density p etc. In their approach each particle
carries all those attributes individually, in addition
to a few new. This also allows the introduction of
air-based fluids – that can be used to simulate air
bubbles in liquids.

The main advantage of SPH is its ability to collide
with the surrounding terrain – which makes it,
unlike Eulerian approaches, very suitable for sprays
and splashes. However, it is less suitable for large
water areas because of the particle resolution
needed to maintain visual appearance.

 2.4 SPH on GPU

The last few years it has become very popular to
accelerate data computations by using the graphics
processing unit (GPU) – a technique called
“general-purpose computing on graphics processing
units”, GPGPU. The GPU is designed to process
resembling data quickly by using parallelism, thus
creating a huge advantage when working with
particles – or in other ways resembling data.

In their paper [HKK2007], Harada, Koshizuka and
Kawaguchi, investigated the SPH algorithm
performance when fully implemented on the GPU,
using OpenGL while storing data in textures. They
noted a higher speed increased, of the proposed
method compared to the CPU, central processing
unit, implementation, the more particles used in the
simulation. In the highest amount of simulated
particles (about 4,194,304), the GPU
implementation was roughly 28 times faster than
the corresponding CPU implementation. However,
since the particle data needs to be stored in the
video memory, about 600 MB was needed, thus
leaving less memory on the GPU for other kind of
geometry, textures etc.

Traditionally, this field of computational power has
only been disposed by using rendering APIs,
application programming interfaces, such as
OpenGL and DirectX. However, the last years a
new range of techniques has become available to
access that power more straightforwardly – for
instance by using Direct Compute or OpenCL.
However, even though there’re new ways of
manipulating the data on GPUs, it is mostly more
complicated to implement algorithms on GPUs than
CPUs – because without sufficient use of the
parallelism, one can end up getting worse
performance than using the CPU for the
calculations.

 3. Visualisation

When the physical calculations (behaviours) for the
frame have been determined, additional
management may be required to mimic the fluids
visual appearance. Mostly, the fluids data are too

complex, or in other ways unsuited, for rendering
straightforwardly, thus adding additional
requirements to prepare the data for visualization.
Luckily, there’re several techniques, both for
Eulerian and Lagrangian fluids, to obtain more
render-friendly data and present it on the screen
with a desirable appearance.

 3.1 Marching cubes

In their paper [LC1987], Lorensen and Cline,
proposed a computer graphics algorithm, namely
“marching cubes”, for extracting a polygonal mesh
of an isosurface from a three-dimimensional scalar
field (essentially 3d points) – sometimes called
voxels. The approach is basically to generate a full-
scale 3d mesh from the point cloud.

The process can be made on the GPU, but it’s
considered expensive, compared more modern
techniques, according to the presentation Screen
Space Fluid Rendering for Games [SG2010].

Although the Marching Cube algorithm is one of
the most popular approaches to generate meshes for
iso-surfaces of scalar fields, there’re some
disadvantages of this approach – especially with
real-time applications in mind. The algorithm itself
is camera-independent, meaning that many invisible
triangles and surface details are generated. Because
of the algorithms way of operating in three
dimensions, but producing results for rendable 2d
surfaces, it has become more and more common to
find other, more cheap ways of rendering fluids.

 3.2 Screen space meshes

An approach which has become more popular the
last few years is to generate a screen space mesh
from the particle data [MSD2007]. Because this
approach mainly operates in 2D space, it avoids a
lot of the expenses that occurs in the Marching
cubes algorithm, thus addressing its main
inadequacies.

The first step is to generate a depth map and
calculate the internal and external silhouettes of the
surface, in screen space. Using this data it is
possible to construct a 2D screen space triangle
mesh with a technique that is derived from the
marching squares approach (which is similar to the
marching cubes). The result-mesh is transformed
back to 3D space for rendering with desired
visualizations techniques such as occlusions,
reflections, refraction, and other shading effects.

The algorithm acts in the following steps:

1. Setup a regular depth map
2. Find internal and external silhouettes
3. Smooth depth values

Approaching Fluids – in Games
Jonas Johansson, 2012

4. Generate a mesh (in 2D) using Marching
Squares

5. Smooth silhouettes
6. Transform the mesh back into world/3d

space
7. Render the mesh with desired shading

techniques

The main difficulty with this approach is the second
step – to find the silhouettes to generate the desired
mesh.

 3.2.1 Silhouettes

The depth map, which stores depth values at each
node of the grid, is generated from scratch at the
beginning of each frame. First the depth values are
initialized with infinite values. Then the algorithm
iterates through the particles in the point cloud
twice. In the first phase, depth values are set. In the
second phase, additional depth values are generated
where the silhouettes cut the grid. In both these
phases the particles have to be transferred from
world space to screen space.

During the detection of silhouettes, the algorithm
iterates through the particles a second time, where
only grid edges which connect depth values that are
further apart than a given number, are considered to
be “silhouette edges”. The key is to find an
additional node on each silhouette edge. Each node
is located between the adjacent nodes of its
silhouette edge and stores the depth value of the
front layer.

 3.2.2 Mesh generation

The next step is to generate vertices and triangles
for the screen space mesh, by using the nodes with
an initialized depth value which is finite. Additional
nodes are generated where silhouette edges have
only one initialized node.

Lastly, the mesh is transformed back to world space
for rendering, which can be done quickly using the
depth map, in order to render it with reflections and
refractions from the environment.

 3.4 Screen space fluid rendering

In their paper on screen space fluid rendering with
curvature flow [LGS2009], Wladimir J. Van der
Laan, Simon Green and Miguel Sainz, proposed a
method derived from the screen space meshes
approach, but with the extension of using the
generated depth buffer directly for rendering –
without generating an intermediate mesh. The
proposed method is targeting mainly two issues:
firstly, it avoids polygonization which does not map

to graphics hardware in a straightforward way, and
secondly, it addresses the issue of jelly-like
appearances of screen space meshes – through
adding surface details on smaller scale than the
particles themselves.

The first steps of the approach is very resembling of
the one used in the screen space meshes approach.
Firstly, the surface depth is determined by rendering
the particles as spheres, and retaining the closest
value – essentially a depth map. Secondly, the result
is smoothed in screen-space to avoid jelly-like
appearance. The problem with the second step is to
find a suitable kernel for the operation – the most
common ones all have different kinds of issues
making them unsuited for the task. Gaussian filters
causes blur over the silhouette edges; Bilateral
filters preserve edges but are computationally
expensive. The solution is to use something called
“Curvature flow”, which is a method, invented to
smooth out sudden changes in curves. Thirdly, a
procedure to simulate the appearance of thickness is
applied, by generating a new depth map – but with
the difference that the fragment shader outputs the
thickness of a particle instead of its depth value.
The rendering is made with point spheres. Depth
testing is still enabled though, so that only the
particles closest to the camera are calculated.
Lastly, all the intermediate results are combined in
the rendering step, which is made by rendering a
full-screen quad. The light characteristics on the
fluid are determined by the normals given by finite
differences of the surface depth from step one.
During the rendering, Perlin noise is added to create
additional detail to the fluid.

 4. Future work

Due to the superior performance of the GPU
implementations of the algorithms, it is likely that
more algorithms will be disposed that emphasizes
the GPUs incredible ability to make liquid
calculations. Compared to the CPUs, GPUs have
the past years increased the arithmetical throughput
more rapidly, thus making them even more
attractive for these kinds of simulations in the
future.

Another area that will probably become more
explored is the way to optimize the well-used
approaches even further, by introducing new data
structures, mathematical optimizations, and/or to
use new hardware to accelerate the calculations
even further.

It is also likely that more research will be made to
improve the possibility of mixing several fluid
hybrid simulation techniques (as in the Restricted
Tall Cell example) – for instance to add splashes to
grid-based fluids.

Approaching Fluids – in Games
Jonas Johansson, 2012

 5. Conclusions

There are several ways – depending on the projects
needs – to implement fluids in games. Eulerian is
very useful to simulate larger areas of water;
Langrangian is convenient for sprays and splashes.
However, whatever approach one decides to use, it
seems to be possible to gain a lot performance by
accelerating the computations using the GPU.

Fluid simulation is a very hot topic with new and
related research areas arising all the time, but fluids
have yet only made a brief introduction in video
games – but it will likely change in the close future.
Thanks to continuous development of hardware,
large-scale fluid simulation will become more
available to games as every day passes by, thus
making the future of fluids very interesting.

References

[CM2011] N. Chentanez, M. Müller, Real-Time
Eulerian Water Simulation Using a Restricted Tall
Cell Grid, ACM Transactions on Graphics
(SIGGRAPH 2011), 30(4), pp 82:1-82:10

[MSKG2005] Matthias Müller, Barbara
Solenthaler, Richard Keiser, Markus Gross.
Eurographics/ACM SIGGRAPH Symposium on
Computer Animation (2005), pp. 1–7K. Anjyo, P.
Faloutsos (Editors)

[HKK2007] Takahiro Harada · Seiichi Koshizuka ·
Yoichiro Kawaguchi. Smoothed Particle
Hydrodynamics on GPUs

[LC1987] William E. Lorensen, Harvey E. Cline:
Marching Cubes: A high resolution 3D surface
construction algorithm. In: Computer Graphics,
Vol. 21, Nr. 4, July 1987

[SG2010] Simon Green. Screen Space Fluid
Rendering for Games”. GDC 2010.

[MSD2007] Matthias Müller Simon Schirm
Stephan Duthaler. Eurographics/ ACM SIGGRAPH
Symposium on Computer Animation (2007)
D. Metaxas and J. Popovic (Editors)

[LGS2009] Screen Space Fluid Rendering with
Curvature Flow. Wladimir J. van der Laan,
NVIDIA, Rijksuniversiteit Groningen. Simon
Green, NVIDIA. Miguel Sainz, NVIDIA

Approaching Fluids – in Games
Jonas Johansson, 2012

